
2024-05-02-Banning the Use of IF-THEN-ELSE

Banning the use of If-Then-Else	
2
Appendix - See Also	 4

1

Banning the use of If-Then-Else

“If-then-else” has been one of the banes of our existence. The concept is too
low-level. To get useful control flows, you have to tie variables into the equation
and, then, you get into the issues of global variables, free variables and those
sorts of things.

On the surface, it seems that “if-then-else” is extremely useful and cannot be a
fundamental problem, because we’ve been indoctrinated to believe in the
existence of if-then-else.

If-then-else was invented to implement conditional values of functions when
using digital CPUs and subroutines. That’s probably why McCarthy called the
programming construct COND.

If-then-else was not originally meant to implement interesting control-flows and to
abstract-away the use of GOTO.

We applied band-aids to our methods of programming CPUs, instead of stepping
back and fixing the underlying problem by banning the use of low-level “if-then-
else”. This is like dispensing Tylenol® to dull pain, while not curing the cancer.

We have applied band-aids to the “problem” of control-flow in CPUs and
subroutines. For example, we declare edicts such as not allowing globals, not
allowing side-effects, etc. These edicts obviously contradict Reality. Servers and
daemons, of course, have side effects, but our band-aids tell us that this cannot
be possible. We become mentally paralyzed by cognitive dissonance. For
example, programmers think that “concurrency is hard” only because our band-
aids weren’t designed to accommodate concurrency, yet, 5 year-old children
learn hard real-time concurrency (piano lessons, reading music) without needing
PhD degrees.

What can we do about this problem? How can we replace the use of if-then-else,
while still achieving useful control flows? We’ve already seen small solutions to

2

the problem of if-then-else in function-based programming , e.g. in various map() 1

functions. These are basically functional expressions of hoary bits of control flow
that happen under-the-hood. We see ideas in FP creeping towards the goal with
concepts like pattern matching.

With developments like OhmJS (based on PEG - parsing expression grammars),
though, we can go whole-hog. We can invent textual syntaxes that express any
control flow that we desire.

OhmJS is, itself, a shining example of convenient expression of a hoary kind of
control flow. Simply looking at an OhmJS grammar reveals a control-flow that
would be hard to implement using if-then-else. OhmJS expresses a backtracking 2

control-flow. “Try this branch, and, if it fails, backtrack and try the next branch...”.  

 I consider function-based programming to be a superset of the current fad of FP-based 1

languages. Function-based programming began in the early days of computing with languages
like FORTRAN and Lisp. It was deemed convenient to use CPU subroutines to fake out
mathematical functions. It appears to have been forgotten that the relationship is a one-way
mapping only - functions can be represented using CPU subroutines, but, CPU subroutines are
not functions.

 confusing2

3

Appendix - See Also

4

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Banning the use of If-Then-Else
	Appendix - See Also

